
Deterministic Rounding for k-median1

• In the k-median problem, we are given a set F of facilities, a set C of clients, and a metric d(·, ·) in
F ∪C. The objective is to open at most k facilities, namelyX ⊆ F with |X| ≤ k, and connect clients
to the nearest open facilities via assignment σ : C → X so as to minimize

cost(X) =
∑
j∈C

d(σ(j), j) (1)

• LP Relaxation.

lp(I) := minimize
∑

i∈F,j∈C
d(i, j)xij (k-MedLP)

∑
i∈F

xij = 1, ∀j ∈ C (2)

yi − xij ≥ 0, ∀i ∈ F, ∀j ∈ C (3)∑
i∈F

yi ≤ k, ∀i ∈ F, ∀j ∈ C (4)

xij , yi ≥ 0, ∀i ∈ F, j ∈ C

For every j ∈ C, define Cj :=
∑

i∈F d(i, j)xij . The rounding algorithm proceeds in phases.

• Filtering. We consider the clients in increasing order ofCj . We add the first client j to a setR. Define
Chld(j) := {` ∈ C : d(j, `) ≤ 4max(Cj , C`)}, and remove Chld(j) from C and continue. At the
end of this step, we would have a set of R “representative” clients, and for all j ∈ R, we have a set
Chld(j) ⊆ C clients which partitions C.

1: procedure FILTERING(F ∪ C, d(i, j)):
2: Solve (k-MedLP) to obtain (x, y).
3: Define Cj ←

∑
i∈F d(i, j)xij .

4: U ← C, R← ∅
5: while U 6= ∅ do:
6: Find j ∈ U with smallest Cj and R← R ∪ j.
7: Set Chld(j)← {` ∈ C : d(j, `) ≤ 4max(Cj , C`)} and U ← U \ Chld(j).
8: return (R, Chld(j), j ∈ R)

Next, for j ∈ R, define Fj := {i ∈ F : d(i, j) ≤ d(i, k), k ∈ R}. That is, Fj is the subset of
the facilities which are closest to j among all representatives, breaking ties arbitrarily. We have the
following properties of the filtering procedure.
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Lemma 1. a. Chld(j) : j ∈ R partitions C and Fj’s partition F .
b. For j ∈ R and i ∈ F , if d(i, j) ≤ 2Cj , then i ∈ Fj .
c. y(Fj) :=

∑
i∈Fj

yi ≥ 1/2 and |R| ≤ 2k.

Proof. (a) follows from definition of algorithm and Fj’s. (b)s is not completely trivial. To see this,
suppose not. Suppose there is a facility i with d(i, j) ≤ 2Cj but i ∈ Fk for some k 6= k. By definition
of Fk, we get d(i, k) ≤ d(i, j) ≤ 2Cj . Triangle inequality implies d(j, k) ≤ 4Cj ≤ 4max(Cj , Ck).
But then one should have been the child of the other. (c) follows from (b) and an averaging argument:
the mass of facilities serving j must be ≥ 1/2 within a distance twice its contribution to the LP. This
implies |R| ≤ 2k.

Lemma 2 (Moving clients to the representative). Given a k-median instance I, consider the k-
median instance I ′ = (F,R, dem) where on each point j ∈ R, there are dem(j) = |Chld(j)| clients
co-located. Then, lp(I ′) ≤ lp(I). Furthermore, given any solution S ⊆ F of |S| ≤ k facilities, we
have costI(S) ≤ costI′(S) + 4lp(I).

Proof. The first part is by design of R. Given a solution (x, y) to lp(I), consider the same solution
for I ′ where for every j′ ∈ Chld(j) we set xij′ = xij for all i ∈ F . The contribution of j′ ∈ Chld(j)
to lp(I ′) is precisely Cj , and thus is ≤ Cj′ , which is the j′s contribution to lp(I).
The second part follows because, by triangle inequality,

costI(S)− costI′(S) ≤
∑
j∈R

∑
j′∈Chld(j)

d(j, j′)

This is because d(j′, S) ≤ d(j′, j) + d(j, S), and d(j, S) is what j′s contribution is to costI′(S).
Now, d(j, j′) ≤ 2Cj + 2Cj′ ≤ 4Cj′ . Summing over all clients, we get that it is ≤ 4lp(I).

• Rounding to a half-integral solution. We now consider the instance I ′ described in Lemma 2 with
co-located clients in |R| distinct positions. Note that the (x, y) solution of lp(I) is a feasible solution
for I ′ of cost at most lp(I). We now massage this fractional solution further potentially increasing
the cost, but not by much.

For every j ∈ R, let i1(j) ∈ Fj denote the closest facility to j. Consider a fractional solution where
all the mass of facilities in Fj is moved to i1(j). More precisely, define:

∀j ∈ R, ∀i ∈ Fj , y′i :=

{
0 if i 6= i1(j)

y(Fj) ≥ 1
2 if i = i1(j)

Let F ∗ := {i1(j) : j ∈ R} be the facilities with any positive y′-mass. Similarly massage the xij’s as
follows

∀j ∈ R,∀i ∈ F, x′ij =

{
0 if i /∈ F ∗∑

i∈Fk
xij if i = i1(k)

(5)

Lemma 3. (x′, y′) is a feasible fractional solution for I ′ with cost lp(x′, y′) ≤ lp(x, y) + 2lp(I ′).
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Proof. Feasibility is easy to see. By design,
∑

i∈F y
′
i =

∑
i∈F yi since Fj’s partition F , and thus

(4) is satisfied. For the same reason, for any j ∈ R, we have
∑

i∈F x
′
ij =

∑
i∈F xij , and thus (2)

is satisfied. x′ij > 0 iff i = i1(k) for some k, and in that case x′ij ≤
∑

i∈Fk
yi = y′i. Thus, (3) is

satisfied.

Let us now consider the increase in the cost when one moves from x to x′. Fix a client j ∈ R. The
increase in the connection cost of j is∑

i∈F
d(i, j)

(
x′ij − xij

)
=
∑
k∈R

∑
i∈Fk

d(i, j)
(
x′ij − xij

)
=
∑
k∈R

∑
i∈Fk

xij · (d(i1(k), j)− d(i, j)) (6)

where we have used (5) for the second equality.

Now, when k = j and for i ∈ Fj , the term d(i1(j), j) − d(i, j) ≤ 0, by definition of i1(j). When
k 6= j, we can still upper bound via the following claim.

Claim 1. For any j, k ∈ R and any i ∈ Fk with xij > 0, d(i1(k), j)− d(i, j) ≤ 2d(i, j).

Note that the claim implies the lemma. To see this, for any client j ∈ R, we can substitute in (6) to
get

lp(x′, y′)− lp(x, y) =
∑
j∈R

dem(j) ·

(∑
i∈F

d(i, j)
(
x′ij − xij

))
≤
∑
j∈R

dem(j)
∑
i∈F

d(i, j)xij = 2lp(I ′)

• Proof of Claim 1. By definition, d(i1(k), k) ≤ d(i, k). And, since i ∈ Fk d(i, k) ≤ d(i, j).
Therefore, by triangle inequality,

d(i1(k), j) ≤ d(i, j) + d(i, k) + d(i1(k), k) ≤ 3d(i, j)

• Moving to {12 , 1}-solution. The fractional solution (x′, y′) simplifies the picture considerably. There
are at most |R| facilities F ∗ := {i1(j) : j ∈ R} which have positive y′-value, and furthermore, each
y′i1(j) ≥

1
2 . Note that i1(j) is the nearest facility to j in F ∗. For reasons which will soon be clear,

define i2(j) to be the second nearest facility in F ∗ to j. Note i1(j)’s are distinct across j ∈ R, but the
i2(j)’s may not be distinct.

Given the y′-values, the best fractional connection cost of any client j ∈ R is in fact as follows : send
y′i1(j) mass to i1(j), and send the remaining (1 − y′i1(j)) ≤

1
2 mass to the i2(j). Note that this is

feasible since yi2(j) ≥
1
2 . Therefore, we get that

lp(x′, y′) ≥
∑
j∈R

dem(j)
(
d(i1(j), j) · yi1(j) + d(i2(j), j) · (1− yi1(j))

)
(7)
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As is, the y′i1(j)’s can be any fraction ≥ 1/2. However, it is not difficult to massage y′’s to ŷ’s such
that ŷi ∈ {12 , 1} and the RHS of (7) goes down. Indeed, one generic way to see this is to consider the
following auxiliary LP with variables v with vi for all i ∈ F ∗

minimize f(v) :
∑
i∈F ∗

vi = k, 0.5 ≤ vi ≤ 1,∀i ∈ F ∗ (8)

where f(v) =
∑

j∈R dem(j)
(
d(i1(j), j) · vi1(j) + d(i2(j), j) · (1− vi1(j))

)
is a linear function.

An extreme point solution must satisfy |F ∗| linearly independent inequalities as equality, and since k
is an integer this implies vi ∈ {0.5, 1}. Do you see why? If ŷ is such an extreme point solution, we
get f(ŷ) ≤ f(y′) since y′ is a valid solution to the auxiliary LP.

• Rounding a 1
2 -integral solution to integral solution. Now we are almost done. First, if any ŷi = 1,

we open it. More precisely, let R′ = {j ∈ R : ŷi1(j) =
1
2}; then we open all facilities {i1(j) : j ∈

R \ R′}, and call this set H . We can open k′ := k − |R \ R′| more facilities. Note that since∑
i∈F ∗ ŷi = k, we have that |R′| = 2k′.

For each j ∈ R′, let us draw a directed edge (j, k) from j to k ∈ R iff i2(j) = i1(k). This leads to
a directed graph D = (R,A) where every vertex has out-degree at most 1 (vertices in R \ R′ don’t
have any out-degree). Thus, D is in fact a collection of in-directed trees with possibly one parallel
edge with the root. More precisely, each (weakly) connected component is a directed in-tree rooted at
some vertex r. All non-root vertices lie in R′, and if r ∈ R′, then r has an edge pointing to its child.

These trees allow us to partition R′ into O ∪ E by taking the “odd” levels and “even” levels of the
tree. This leads to the following property : for all arcs (j, k) if both end points are in R′, then one of
them is in O and one of them is in E. Now, since |R′| ≤ 2k′, one of these sets has at most k′ clients.
Wlog, assume this is O. Then the final k-median algorithm is as follows : for each j ∈ O, open i1(j)
along with the set H facilities opened before.

1: procedure kMED-ROUNDING(F ∪ C, d(i, j)):
2: Run FILTERING(F ∪ C, d) to obtain (R,Chld(j)) with |R| ≤ 2k.
3: For all j ∈ R: Fj ← {i ∈ F : d(i, j) ≤ d(i, k), k ∈ R}.
4: F ∗ ← {i1(j) : j ∈ R} where i1(j) is the nearest facility to j in Fj .
5: Compute the {12 , 1}-solution ŷ given by the solution to (8).
6: H ← {i ∈ F ∗ : ŷi = 1}. . Let k′ := k − |H|
7: R′ ← {j ∈ R : ŷi1(j) =

1
2} . |R′| = 2k′

8: For all j ∈ R, i2(j) is second nearest facility to j in F ∗.
9: Form directed graph D = (R,A) where (j, k) if i2(j) = i1(k).

10: Using D, partition R′ into O ∪ E as described above; wlog, |O| ≤ |E|
11: Open S ← H ∪ {i1(j) : j ∈ O}.

Theorem 1. The algorithm kMED-ROUNDING is a 10-approximation.

Proof. For j ∈ R \ R′, it pays d(i1(j), j) in both the LP and the solution S since i1(j) ∈ H is
opened. Consider now a j ∈ R′. Note that either i1(j) is open or i2(j) is open. Indeed, if i1(j) /∈ O,
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then consider i1(k) where where k ∈ R is the unique client with i1(k) = i2(j). Either k /∈ R′ in
which case i1(k) ∈ H is open. Or, k ∈ R′ which implies k ∈ R′ and thus i1(k) is open. Therefore,
every client j ∈ R pays at most ≤ d(i2(j), j) in this solution. But in the LP, j pays ≥ d(i2(j),j)

2 since
ŷi1(j) = 1/2. Thus, the cost of the algorithm is at most 2 · lp(x′, y′). By Lemma 3, we get that this
cost is ≤ 6lp(I ′) ≤ 6lp(I). Since this solution is for I ′, porting it to I and using Lemma 2, we get
cost(S, I) ≤ 10lp(I).

Notes

The algorithm described here is the first constant factor approximation algorithm for k-median. This can
be found in the paper [2] by Charikar, Guha, Shmoys, and Tardos. That paper consider the special case of
F = C and describe a 62

3 -approximation. Indeed, when F = C, the above analysis gives 8-approximation,
and we leave the details for the reader. The improvement to 6.67 is obtained by a better rounding of the
1/2-integral solution to integral (as the reader may have noticed, our analysis has a lot of slack). One
can improve the approximation factor of 10 to 8 as is described in the paper [6] by Swamy, but I am not
100% sure if one can go all the way to 62

3 . My presentation above is borrowed from Swamy’s paper. A
different randomized rounding algorithm achieving the factor 3.25 can be found in the paper [3], but the
analysis is quite involved. The current best approximation factor for k-median is 2.625 which can be found
in the paper [1] by Byrka, Pan, Rybicki, Srinivasan, and Trinh. This algorithm however follows a different
technique than LP-rounding. It is known that unless P = NP , the approximation factor for k-median
can’t be below 1.735; this result can be found in the papers [4] and [5], respectively. One advantage of
the rounding algorithms in [3] and [6] is that they are versatile enough to generalize to capture a host of
problems; we refer the reader to Swamy’s paper [6] for interesting applications.
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