Deterministic Rounding for k-median'

* In the k-median problem, we are given a set F of facilities, a set C' of clients, and a metric d(-, -) in
FUC. The objective is to open at most k facilities, namely X C F with | X | < k, and connect clients
to the nearest open facilities via assignment o : C' — X so as to minimize

cost(X) = > d(a(4),4) (1)
jecC
e LP Relaxation.
Ip(Z) := minimize Y d(i, j)z;; (k-MedLP)
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For every j € C, define C; := ), - d(4, j)x;;. The rounding algorithm proceeds in phases.

* Filtering. We consider the clients in increasing order of C';. We add the first client j to a set 2. Define
Chld(j) := {f € C : d(j,¢) < 4max(C},Cy)}, and remove Chld(j) from C and continue. At the
end of this step, we would have a set of R “representative” clients, and for all j € R, we have a set
Chld(j) € C clients which partitions C.

1: procedure FILTERING(F' U C, d(i, j)):

2 Solve (k-MedLP) to obtain (x,y).

3 Define Cj — ZiEF d(Z,])fL‘w

4: U«—C, R«

5: while U # () do:

6 Find j € U with smallest C; and R <— R U j.

7 Set Chld(j) «+— {£ € C : d(j,¢) < 4max(C},Cp)} and U < U \ Chld(j).
8

return (R, Chld(j),j € R)

Next, for j € R, define F; := {i € F : d(i,j) < d(i,k),k € R}. Thatis, F} is the subset of
the facilities which are closest to 7 among all representatives, breaking ties arbitrarily. We have the
following properties of the filtering procedure.
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Lemmal. a. Chld(j) : j € R partitions C' and Fj’s partition F'.

b. Forj € Rand i € F,if d(i,j) < 2Cj, then i € F).

c. y(Fy) = ZieFj y; > 1/2and |R| < 2k.
Proof. (a) follows from definition of algorithm and F}’s. (b)s is not completely trivial. To see this,
suppose not. Suppose there is a facility ¢ with d(i, j) < 2C; buti € Fj, for some k # k. By definition
of Fy,, we get d(i, k) < d(i,j) < 2C}. Triangle inequality implies d(j, k) < 4C; < 4max(C}, Cy).
But then one should have been the child of the other. (c) follows from (b) and an averaging argument:
the mass of facilities serving j must be > 1/2 within a distance twice its contribution to the LP. This
implies |R| < 2k. O

Lemma 2 (Moving clients to the representative). Given a k-median instance I, consider the k-
median instance ' = (F, R, dem) where on each point j € R, there are dem(j) = |Chld(j)| clients
co-located. Then, |p(Z') < Ip(Z). Furthermore, given any solution S C F of |S| < k facilities, we
have costz(S) < costz/(S) + 4lp(Z).

Proof. The first part is by design of R. Given a solution (z,y) to Ip(Z), consider the same solution
for 7' where for every j’ € Chld(j) we set x;;; = x;; for all ¢ € F. The contribution of j* € Chld(j)
to Ip(Z’) is precisely C;, and thus is < C, which is the j's contribution to Ip(Z).

The second part follows because, by triangle inequality,

costz(S) — costz/(5) < Z Z d(j,5")

JER j/€Chld()

This is because d(j',S) < d(j',7) + d(j,S), and d(j, S) is what j's contribution is to costz:(.S).
Now, d(j,j") < 2C; + 2Cj < 4Cj. Summing over all clients, we get that it is < 4Ip(Z). O

* Rounding to a half-integral solution. We now consider the instance Z’ described in Lemma 2 with
co-located clients in | R| distinct positions. Note that the (x, y) solution of Ip(Z) is a feasible solution
for Z' of cost at most Ip(Z). We now massage this fractional solution further potentially increasing
the cost, but not by much.

For every j € R, leti;(j) € F} denote the closest facility to j. Consider a fractional solution where
all the mass of facilities in F; is moved to 41 (j). More precisely, define:
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Let F* := {i1(j) : j € R} be the facilities with any positive y'-mass. Similarly massage the z;;’s as
follows
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Lemma 3. (2/,4/) is a feasible fractional solution for T' with cost Ip(z’,y") < Ip(x,y) + 2lp(Z').



Proof. Feasibility is easy to see. By design, Y ,.py; = > ,cp¥: since F};’s partition F', and thus
.(4) is. satisﬁed,. For tl.le same reason, for any j € R, we have Z}e FTi = D icF a:zjl and thus (2)
is satisfied. T > 0 iff ¢ = 41(k) for some k, and in that case T < ZieFk y; = y;. Thus, (3) is
satisfied.

Let us now consider the increase in the cost when one moves from z to z’. Fix a client j € R. The
increase in the connection cost of j is

Zd(i,j) (:L’;] - a:ij) = Z Z d(i, 7) (x;j - xij)

el keR i€ Fy,

= 303wy i), ) - G, ) ®)
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where we have used (5) for the second equality.

Now, when k& = j and for i € Fj, the term d(i1(j),7) — d(4,j) < 0, by definition of i;(j). When
k # j, we can still upper bound via the following claim.

Claim 1. Forany j, k € Rand any i € Fj, with x;; > 0, d(i1(k), j) — d(4,j) < 2d(3, j).

Note that the claim implies the lemma. To see this, for any client j € R, we can substitute in (6) to
get

Ip(a',y/) = Ip(z,y) = > dem(j)- <Zd<z‘,j> (:c;j—:cij)>

jJER i€EF
< Zdem(j)zd(i,j)ﬂcij =2p(Z) O
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* Proof of Claim 1. By definition, d(i;(k),k) < d(i,k). And, since i € Fy d(i,k) < d(i,7).
Therefore, by triangle inequality,

d(ll(k)v.7> < d(lvj) + d(iv k) + d(i1<k)7 k) < 3d(i7j)

* Moving to {3, 1}-solution. The fractional solution (2’, ') simplifies the picture considerably. There
are at most | R| facilities F'* := {i1(j) : j € R} which have positive y/'-value, and furthermore, each

yl’.l(j) > % Note that i1 (7) is the nearest facility to j in F™*. For reasons which will soon be clear,

define i5(j) to be the second nearest facility in F™* to j. Note i1(j)’s are distinct across j € R, but the
i2(7)’s may not be distinct.

Given the 3'-values, the best fractional connection cost of any client j € R is in fact as follows : send
yél(j) mass to i1(j), and send the remaining (1 — ygl(j)) < 1 mass to the i5(j). Note that this is
feasible since y;,(;) > % Therefore, we get that

Ip(2',y") = > " dem(j) (d(i1(), 5) - vir () + dlia(4),4) - (1= vir () (M
JER



As is, the ygl(j)’s can be any fraction > 1/2. However, it is not difficult to massage y"’s to 3’s such

that y; € {%, 1} and the RHS of (7) goes down. Indeed, one generic way to see this is to consider the
following auxiliary LP with variables v with v; for all ¢ € F™*

minimize f(v) : Z vi=k, 05<v;<1,Vie F* )
1€EF*

where f(v) = Y icpdem(j) (d(i1(5),7) - vijy + d(ia(4),5) - (1 = vy,(;))) is a linear function.
An extreme point solution must satisfy | F*| linearly independent inequalities as equality, and since k
is an integer this implies v; € {0.5,1}. Do you see why? If ¥ is such an extreme point solution, we
get f(y) < f(¥') since ' is a valid solution to the auxiliary LP.

* Rounding a %-integral solution to integral solution. Now we are almost done. First, if any 7; = 1,
we open it. More precisely, let R' = {j € R : 3;,(j) = 3}: then we open all facilities {i1(j) : j €
R\ R'}, and call this set H. We can open k' := k — |R \ R/| more facilities. Note that since
> icp+ Ui = k, we have that | R'| = 2k’

For each j € R’, let us draw a directed edge (4, k) from j to k € R iff i5(j) = i1(k). This leads to
a directed graph D = (R, A) where every vertex has out-degree at most 1 (vertices in R\ R’ don’t
have any out-degree). Thus, D is in fact a collection of in-directed trees with possibly one parallel
edge with the root. More precisely, each (weakly) connected component is a directed in-tree rooted at
some vertex . All non-root vertices lie in R/, and if » € R/, then r has an edge pointing to its child.

These trees allow us to partition R into O U E by taking the “odd” levels and “even” levels of the
tree. This leads to the following property : for all arcs (74, k) if both end points are in R/, then one of
them is in O and one of them is in E. Now, since |R'| < 2k’, one of these sets has at most &’ clients.
Wlog, assume this is O. Then the final k-median algorithm is as follows : for each j € O, open i1 (j)
along with the set H facilities opened before.

1: procedure KMED-ROUNDING(F U C, d(i, 7)):

2: Run FILTERING(F' U C, d) to obtain (R, Chld(j)) with |R| < 2k.

3 Forall j € R: Fj <~ {i € F :d(i,j) <d(i, k), k € R}.

4 F* < {i1(j) : j € R} where i1(j) is the nearest facility to j in Fj.
5: Compute the {3, 1}-solution J given by the solution to (8).

6 H<+{ieF*:y=1}.>Letk' :=k— |H|

7 R+ {jeR: §yy =3}>IR|=2

8 For all j € R, i2(j) is second nearest facility to j in F™*.

9: Form directed graph D = (R, A) where (j, k) if ia(j) = i1 (k).

10: Using D, partition R’ into O U E as described above; wlog, (O] < |E|
11: Open S «+ H U {ii(y) : j € O}

Theorem 1. The algorithm KMED-ROUNDING is a 10-approximation.

Proof. For j € R\ R/, it pays d(i1(j),7) in both the LP and the solution S since i1(j) € H is
opened. Consider now a j € R’. Note that either i1 () is open or i2(j) is open. Indeed, if i1 (j) ¢ O,



then consider i1 (k) where where k& € R is the unique client with i1 (k) = i2(j). Either & ¢ R in
which case i1 (k) € H is open. Or, k € R’ which implies k¥ € R’ and thus i1 (k) is open. Therefore,
every client j € R pays at most < d(iz(j), 7) in this solution. But in the LP, j pays > w since
Ui (j) = 1/2. Thus, the cost of the algorithm is at most 2 - Ip(2', ). By Lemma 3, we get that this
cost is < 6lp(Z’) < 6lp(Z). Since this solution is for Z’, porting it to Z and using Lemma 2, we get

cost(S,Z) < 10lp(2). O

Notes

The algorithm described here is the first constant factor approximation algorithm for k-median. This can
be found in the paper [2] by Charikar, Guha, Shmoys, and Tardos. That paper consider the special case of
F = (C and describe a 6%—approximation. Indeed, when F' = C, the above analysis gives 8-approximation,
and we leave the details for the reader. The improvement to 6.67 is obtained by a better rounding of the
1/2-integral solution to integral (as the reader may have noticed, our analysis has a lot of slack). One
can improve the approximation factor of 10 to 8 as is described in the paper [6] by Swamy, but I am not
100% sure if one can go all the way to 6%. My presentation above is borrowed from Swamy’s paper. A
different randomized rounding algorithm achieving the factor 3.25 can be found in the paper [3], but the
analysis is quite involved. The current best approximation factor for k-median is 2.625 which can be found
in the paper [1] by Byrka, Pan, Rybicki, Srinivasan, and Trinh. This algorithm however follows a different
technique than LP-rounding. It is known that unless P = NP, the approximation factor for k-median
can’t be below 1.735; this result can be found in the papers [4] and [5], respectively. One advantage of
the rounding algorithms in [3] and [6] is that they are versatile enough to generalize to capture a host of
problems; we refer the reader to Swamy’s paper [6] for interesting applications.
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