Deterministic Rounding for k-median ${ }^{1}$

- In the k-median problem, we are given a set F of facilities, a set C of clients, and a metric $d(\cdot, \cdot)$ in $F \cup C$. The objective is to open at most k facilities, namely $X \subseteq F$ with $|X| \leq k$, and connect clients to the nearest open facilities via assignment $\sigma: C \rightarrow X$ so as to minimize

$$
\begin{equation*}
\operatorname{cost}(X)=\sum_{j \in C} d(\sigma(j), j) \tag{1}
\end{equation*}
$$

- LP Relaxation.

$$
\begin{array}{ll}
\operatorname{lp}(\mathcal{I}):=\operatorname{minimize} & \sum_{i \in F, j \in C} d(i, j) x_{i j} \\
& \sum_{i \in F} x_{i j}=1, \\
& y_{i}-x_{i j} \geq 0, \quad \forall j \in C \\
& \sum_{i \in F} y_{i} \leq k, \quad \forall i \in F, \forall j \in C, \forall j \in C \tag{4}\\
& x_{i j}, y_{i} \geq 0, \quad \forall i \in F, j \in C
\end{array}
$$

For every $j \in C$, define $C_{j}:=\sum_{i \in F} d(i, j) x_{i j}$. The rounding algorithm proceeds in phases.

- Filtering. We consider the clients in increasing order of C_{j}. We add the first client j to a set R. Define $\operatorname{Chld}(j):=\left\{\ell \in C: d(j, \ell) \leq 4 \max \left(C_{j}, C_{\ell}\right)\right\}$, and remove $\operatorname{Chld}(j)$ from C and continue. At the end of this step, we would have a set of R "representative" clients, and for all $j \in R$, we have a set Chld $(j) \subseteq C$ clients which partitions C.

```
procedure Filtering \((F \cup C, d(i, j))\) :
    Solve ( \(k\)-MedLP) to obtain \((x, y)\).
    Define \(C_{j} \leftarrow \sum_{i \in F} d(i, j) x_{i j}\).
    \(U \leftarrow C, R \leftarrow \emptyset\)
    while \(U \neq \emptyset\) do:
        Find \(j \in U\) with smallest \(C_{j}\) and \(R \leftarrow R \cup j\).
        Set Chld \((j) \leftarrow\left\{\ell \in C: d(j, \ell) \leq 4 \max \left(C_{j}, C_{\ell}\right)\right\}\) and \(U \leftarrow U \backslash \operatorname{Chld}(j)\).
    return \((R, \operatorname{Chld}(j), j \in R)\)
```

Next, for $j \in R$, define $F_{j}:=\{i \in F: d(i, j) \leq d(i, k), k \in R\}$. That is, F_{j} is the subset of the facilities which are closest to j among all representatives, breaking ties arbitrarily. We have the following properties of the filtering procedure.

[^0]Lemma 1. a. Chld $(j): j \in R$ partitions C and F_{j} 's partition F.
b. For $j \in R$ and $i \in F$, if $d(i, j) \leq 2 C_{j}$, then $i \in F_{j}$.
c. $y\left(F_{j}\right):=\sum_{i \in F_{j}} y_{i} \geq 1 / 2$ and $|R| \leq 2 k$.

Proof. (a) follows from definition of algorithm and F_{j} 's. (b)s is not completely trivial. To see this, suppose not. Suppose there is a facility i with $d(i, j) \leq 2 C_{j}$ but $i \in F_{k}$ for some $k \neq k$. By definition of F_{k}, we get $d(i, k) \leq d(i, j) \leq 2 C_{j}$. Triangle inequality implies $d(j, k) \leq 4 C_{j} \leq 4 \max \left(C_{j}, C_{k}\right)$. But then one should have been the child of the other. (c) follows from (b) and an averaging argument: the mass of facilities serving j must be $\geq 1 / 2$ within a distance twice its contribution to the LP. This implies $|R| \leq 2 k$.

Lemma 2 (Moving clients to the representative). Given a k-median instance \mathcal{I}, consider the k median instance $\mathcal{I}^{\prime}=(F, R$, dem) where on each point $j \in R$, there are $\operatorname{dem}(j)=|\operatorname{Chld}(j)|$ clients co-located. Then, $\operatorname{lp}\left(\mathcal{I}^{\prime}\right) \leq \operatorname{lp}(\mathcal{I})$. Furthermore, given any solution $S \subseteq F$ of $|S| \leq k$ facilities, we have $\operatorname{cost}_{\mathcal{I}}(S) \leq \operatorname{cost}_{\mathcal{I}^{\prime}}(S)+4 \operatorname{lp}(\mathcal{I})$.

Proof. The first part is by design of R. Given a solution (x, y) to $\operatorname{lp}(\mathcal{I})$, consider the same solution for \mathcal{I}^{\prime} where for every $j^{\prime} \in \operatorname{Chld}(j)$ we set $x_{i j^{\prime}}=x_{i j}$ for all $i \in F$. The contribution of $j^{\prime} \in \operatorname{Chld}(j)$ to $\operatorname{lp}\left(\mathcal{I}^{\prime}\right)$ is precisely C_{j}, and thus is $\leq C_{j^{\prime}}$, which is the j^{\prime} s contribution to $\operatorname{lp}(\mathcal{I})$.
The second part follows because, by triangle inequality,

$$
\operatorname{cost}_{\mathcal{I}}(S)-\operatorname{cost}_{\mathcal{I}^{\prime}}(S) \leq \sum_{j \in R} \sum_{j^{\prime} \in \operatorname{Chld}(j)} d\left(j, j^{\prime}\right)
$$

This is because $d\left(j^{\prime}, S\right) \leq d\left(j^{\prime}, j\right)+d(j, S)$, and $d(j, S)$ is what j^{\prime} s contribution is to $\operatorname{cost}_{\mathcal{I}^{\prime}}(S)$. Now, $d\left(j, j^{\prime}\right) \leq 2 C_{j}+2 C_{j^{\prime}} \leq 4 C_{j^{\prime}}$. Summing over all clients, we get that it is $\leq 4 \operatorname{lp}(\mathcal{I})$.

- Rounding to a half-integral solution. We now consider the instance \mathcal{I}^{\prime} described in Lemma 2 with co-located clients in $|R|$ distinct positions. Note that the (x, y) solution of $\operatorname{lp}(\mathcal{I})$ is a feasible solution for \mathcal{I}^{\prime} of cost at most $\operatorname{lp}(\mathcal{I})$. We now massage this fractional solution further potentially increasing the cost, but not by much.
For every $j \in R$, let $i_{1}(j) \in F_{j}$ denote the closest facility to j. Consider a fractional solution where all the mass of facilities in F_{j} is moved to $i_{1}(j)$. More precisely, define:

$$
\forall j \in R, \quad \forall i \in F_{j}, \quad y_{i}^{\prime}:= \begin{cases}0 & \text { if } i \neq i_{1}(j) \\ y\left(F_{j}\right) \geq \frac{1}{2} & \text { if } i=i_{1}(j)\end{cases}
$$

Let $F^{*}:=\left\{i_{1}(j): j \in R\right\}$ be the facilities with any positive y^{\prime}-mass. Similarly massage the $x_{i j}$'s as follows

$$
\forall j \in R, \forall i \in F, \quad x_{i j}^{\prime}= \begin{cases}0 & \text { if } i \notin F^{*} \tag{5}\\ \sum_{i \in F_{k}} x_{i j} & \text { if } i=i_{1}(k)\end{cases}
$$

Lemma 3. $\left(x^{\prime}, y^{\prime}\right)$ is a feasible fractional solution for \mathcal{I}^{\prime} with cost $\operatorname{lp}\left(x^{\prime}, y^{\prime}\right) \leq \operatorname{lp}(x, y)+2 \operatorname{lp}\left(\mathcal{I}^{\prime}\right)$.

Proof. Feasibility is easy to see. By design, $\sum_{i \in F} y_{i}^{\prime}=\sum_{i \in F} y_{i}$ since F_{j} 's partition F, and thus (4) is satisfied. For the same reason, for any $j \in R$, we have $\sum_{i \in F} x_{i j}^{\prime}=\sum_{i \in F} x_{i j}$, and thus (2) is satisfied. $x_{i j}^{\prime}>0$ iff $i=i_{1}(k)$ for some k, and in that case $x_{i j}^{\prime} \leq \sum_{i \in F_{k}} y_{i}=y_{i}^{\prime}$. Thus, (3) is satisfied.

Let us now consider the increase in the cost when one moves from x to x^{\prime}. Fix a client $j \in R$. The increase in the connection cost of j is

$$
\begin{align*}
\sum_{i \in F} d(i, j)\left(x_{i j}^{\prime}-x_{i j}\right) & =\sum_{k \in R} \sum_{i \in F_{k}} d(i, j)\left(x_{i j}^{\prime}-x_{i j}\right) \\
& =\sum_{k \in R} \sum_{i \in F_{k}} x_{i j} \cdot\left(d\left(i_{1}(k), j\right)-d(i, j)\right) \tag{6}
\end{align*}
$$

where we have used (5) for the second equality.
Now, when $k=j$ and for $i \in F_{j}$, the term $d\left(i_{1}(j), j\right)-d(i, j) \leq 0$, by definition of $i_{1}(j)$. When $k \neq j$, we can still upper bound via the following claim.

Claim 1. For any $j, k \in R$ and any $i \in F_{k}$ with $x_{i j}>0, d\left(i_{1}(k), j\right)-d(i, j) \leq 2 d(i, j)$.
Note that the claim implies the lemma. To see this, for any client $j \in R$, we can substitute in (6) to get

$$
\begin{aligned}
\operatorname{lp}\left(x^{\prime}, y^{\prime}\right)-\operatorname{lp}(x, y) & =\sum_{j \in R} \operatorname{dem}(j) \cdot\left(\sum_{i \in F} d(i, j)\left(x_{i j}^{\prime}-x_{i j}\right)\right) \\
& \leq \sum_{j \in R} \operatorname{dem}(j) \sum_{i \in F} d(i, j) x_{i j}=2 \operatorname{lp}\left(\mathcal{I}^{\prime}\right)
\end{aligned}
$$

- Proof of Claim 1. By definition, $d\left(i_{1}(k), k\right) \leq d(i, k)$. And, since $i \in F_{k} d(i, k) \leq d(i, j)$. Therefore, by triangle inequality,

$$
d\left(i_{1}(k), j\right) \leq d(i, j)+d(i, k)+d\left(i_{1}(k), k\right) \leq 3 d(i, j)
$$

- Moving to $\left\{\frac{1}{2}, 1\right\}$-solution. The fractional solution $\left(x^{\prime}, y^{\prime}\right)$ simplifies the picture considerably. There are at most $|R|$ facilities $F^{*}:=\left\{i_{1}(j): j \in R\right\}$ which have positive y^{\prime}-value, and furthermore, each $y_{i_{1}(j)}^{\prime} \geq \frac{1}{2}$. Note that $i_{1}(j)$ is the nearest facility to j in F^{*}. For reasons which will soon be clear, define $i_{2}(j)$ to be the second nearest facility in F^{*} to j. Note $i_{1}(j)$'s are distinct across $j \in R$, but the $i_{2}(j)$'s may not be distinct.

Given the y^{\prime}-values, the best fractional connection cost of any client $j \in R$ is in fact as follows : send $y_{i_{1}(j)}^{\prime}$ mass to $i_{1}(j)$, and send the remaining $\left(1-y_{i_{1}(j)}^{\prime}\right) \leq \frac{1}{2}$ mass to the $i_{2}(j)$. Note that this is feasible since $y_{i_{2}(j)} \geq \frac{1}{2}$. Therefore, we get that

$$
\begin{equation*}
\operatorname{lp}\left(x^{\prime}, y^{\prime}\right) \geq \sum_{j \in R} \operatorname{dem}(j)\left(d\left(i_{1}(j), j\right) \cdot y_{i_{1}(j)}+d\left(i_{2}(j), j\right) \cdot\left(1-y_{i_{1}(j)}\right)\right) \tag{7}
\end{equation*}
$$

As is, the $y_{i_{1}(j)}^{\prime}$'s can be any fraction $\geq 1 / 2$. However, it is not difficult to massage $y^{\prime \prime}$'s to \widehat{y} 's such that $\widehat{y}_{i} \in\left\{\frac{1}{2}, 1\right\}$ and the RHS of (7) goes down. Indeed, one generic way to see this is to consider the following auxiliary LP with variables \mathbf{v} with v_{i} for all $i \in F^{*}$

$$
\begin{equation*}
\operatorname{minimize} \quad f(\mathbf{v}): \sum_{i \in F^{*}} v_{i}=k, 0.5 \leq v_{i} \leq 1, \forall i \in F^{*} \tag{8}
\end{equation*}
$$

where $f(\mathbf{v})=\sum_{j \in R} \operatorname{dem}(j)\left(d\left(i_{1}(j), j\right) \cdot v_{i_{1}(j)}+d\left(i_{2}(j), j\right) \cdot\left(1-v_{i_{1}(j)}\right)\right)$ is a linear function. An extreme point solution must satisfy $\left|F^{*}\right|$ linearly independent inequalities as equality, and since k is an integer this implies $\mathbf{v}_{i} \in\{0.5,1\}$. Do you see why? If \widehat{y} is such an extreme point solution, we get $f(\widehat{y}) \leq f\left(y^{\prime}\right)$ since y^{\prime} is a valid solution to the auxiliary LP.

- Rounding $\boldsymbol{a} \frac{1}{2}$-integral solution to integral solution. Now we are almost done. First, if any $\widehat{y}_{i}=1$, we open it. More precisely, let $R^{\prime}=\left\{j \in R: \widehat{y}_{i_{1}(j)}=\frac{1}{2}\right\}$; then we open all facilities $\left\{i_{1}(j): j \in\right.$ $\left.R \backslash R^{\prime}\right\}$, and call this set H. We can open $k^{\prime}:=k-\left|R \backslash R^{\prime}\right|$ more facilities. Note that since $\sum_{i \in F^{*}} \widehat{y}_{i}=k$, we have that $\left|R^{\prime}\right|=2 k^{\prime}$.
For each $j \in R^{\prime}$, let us draw a directed edge (j, k) from j to $k \in R$ iff $i_{2}(j)=i_{1}(k)$. This leads to a directed graph $D=(R, A)$ where every vertex has out-degree at most 1 (vertices in $R \backslash R^{\prime}$ don't have any out-degree). Thus, D is in fact a collection of in-directed trees with possibly one parallel edge with the root. More precisely, each (weakly) connected component is a directed in-tree rooted at some vertex r. All non-root vertices lie in R^{\prime}, and if $r \in R^{\prime}$, then r has an edge pointing to its child.
These trees allow us to partition R^{\prime} into $O \cup E$ by taking the "odd" levels and "even" levels of the tree. This leads to the following property : for all arcs (j, k) if both end points are in R^{\prime}, then one of them is in O and one of them is in E. Now, since $\left|R^{\prime}\right| \leq 2 k^{\prime}$, one of these sets has at most k^{\prime} clients. Wlog, assume this is O. Then the final k-median algorithm is as follows : for each $j \in O$, open $i_{1}(j)$ along with the set H facilities opened before.

```
procedure \(k\) MED-RoUnding \((F \cup C, d(i, j))\) :
    Run Filtering \((F \cup C, d)\) to obtain \((R, \operatorname{Chld}(j))\) with \(|R| \leq 2 k\).
    For all \(j \in R: F_{j} \leftarrow\{i \in F: d(i, j) \leq d(i, k), k \in R\}\).
    \(F^{*} \leftarrow\left\{i_{1}(j): j \in R\right\}\) where \(i_{1}(j)\) is the nearest facility to \(j\) in \(F_{j}\).
    Compute the \(\left\{\frac{1}{2}, 1\right\}\)-solution \(\widehat{y}\) given by the solution to (8).
    \(H \leftarrow\left\{i \in F^{*}: \widehat{y}_{i}=1\right\} . \triangleright\) Let \(k^{\prime}:=k-|H|\)
    \(R^{\prime} \leftarrow\left\{j \in R: \widehat{y}_{i_{1}(j)}=\frac{1}{2}\right\} \triangleright\left|R^{\prime}\right|=2 k^{\prime}\)
    For all \(j \in R, i_{2}(j)\) is second nearest facility to \(j\) in \(F^{*}\).
    Form directed graph \(D=(R, A)\) where \((j, k)\) if \(i_{2}(j)=i_{1}(k)\).
    Using \(D\), partition \(R^{\prime}\) into \(O \cup E\) as described above; wlog, \(|O| \leq|E|\)
    Open \(S \leftarrow H \cup\left\{i_{1}(j): j \in O\right\}\).
```

Theorem 1. The algorithm k MED-Rounding is a 10 -approximation.

Proof. For $j \in R \backslash R^{\prime}$, it pays $d\left(i_{1}(j), j\right)$ in both the LP and the solution S since $i_{1}(j) \in H$ is opened. Consider now a $j \in R^{\prime}$. Note that either $i_{1}(j)$ is open or $i_{2}(j)$ is open. Indeed, if $i_{1}(j) \notin O$,
then consider $i_{1}(k)$ where where $k \in R$ is the unique client with $i_{1}(k)=i_{2}(j)$. Either $k \notin R^{\prime}$ in which case $i_{1}(k) \in H$ is open. Or, $k \in R^{\prime}$ which implies $k \in R^{\prime}$ and thus $i_{1}(k)$ is open. Therefore, every client $j \in R$ pays at most $\leq d\left(i_{2}(j), j\right)$ in this solution. But in the LP, j pays $\geq \frac{d\left(i_{2}(j), j\right)}{2}$ since $\widehat{y}_{i_{1}(j)}=1 / 2$. Thus, the cost of the algorithm is at most $2 \cdot \operatorname{lp}\left(x^{\prime}, y^{\prime}\right)$. By Lemma 3, we get that this cost is $\leq 6 \operatorname{lp}\left(\mathcal{I}^{\prime}\right) \leq 6 \operatorname{lp}(\mathcal{I})$. Since this solution is for \mathcal{I}^{\prime}, porting it to \mathcal{I} and using Lemma 2, we get $\operatorname{cost}(S, \mathcal{I}) \leq 10 \operatorname{lp}(\mathcal{I})$.

Notes

The algorithm described here is the first constant factor approximation algorithm for k-median. This can be found in the paper [2] by Charikar, Guha, Shmoys, and Tardos. That paper consider the special case of $F=C$ and describe a $6 \frac{2}{3}$-approximation. Indeed, when $F=C$, the above analysis gives 8 -approximation, and we leave the details for the reader. The improvement to 6.67 is obtained by a better rounding of the $1 / 2$-integral solution to integral (as the reader may have noticed, our analysis has a lot of slack). One can improve the approximation factor of 10 to 8 as is described in the paper [6] by Swamy, but I am not 100% sure if one can go all the way to $6 \frac{2}{3}$. My presentation above is borrowed from Swamy's paper. A different randomized rounding algorithm achieving the factor 3.25 can be found in the paper [3], but the analysis is quite involved. The current best approximation factor for k-median is 2.625 which can be found in the paper [1] by Byrka, Pan, Rybicki, Srinivasan, and Trinh. This algorithm however follows a different technique than LP-rounding. It is known that unless $P=N P$, the approximation factor for k-median can't be below 1.735 ; this result can be found in the papers [4] and [5], respectively. One advantage of the rounding algorithms in [3] and [6] is that they are versatile enough to generalize to capture a host of problems; we refer the reader to Swamy's paper [6] for interesting applications.

References

[1] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation for k-median, and positive correlation in budgeted optimization. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 737-756, 2014.
[2] M. Charikar, S. Guha, D. B. Shmoys, and É. Tardos. A Constant Factor Approximation Algorithm for the k-median Problem. Proceedings of 31st ACM STOC, 1999.
[3] M. Charikar and S. Li. A dependent lp-rounding approach for the k-median problem. In Proc., International Colloquium on Automata, Languages and Programming (ICALP), pages 194-205, 2012.
[4] S. Guha and S. Khuller. Greedy Strikes Back: Improved Facility Location Algorithms. In Proc., ACMSIAM Symposium on Discrete Algorithms (SODA), pages 649-657, 1998.
[5] K. Jain, M. Mahdian, and M. Salavatipour. Packing Steiner Trees. Proceedings of $13^{\text {th }}$ Annual ACMSIAM Symposium on Discrete Algorithms (SODA), pages 266-274, 2003.
[6] C. Swamy. Improved approximation algorithms for matroid and knapsack median problems and applications. ACM Trans. on Algorithms (TALG), 12(4):1-22, 2016.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified : 3rd Jan, 2022
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

